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SUMMARY 

This paper discusses the influence of the stabilization parameter on the convergence factor of various iterative 
methods for the solution of the Stokes problem discretized by the so-called ZocalZy stabilized Q1-PO finite 
element. Our objective is to point out optimal parameters which ensure rapid convergence. 

The first part of the paper is concerned with the dual formulation of the problem. It gives the theoretical 
precision and practical developments of our stabilized context Uzuwa-type algorithm. We assert that the 
convergence factor of such a method is majored independently of the mesh size by a function of the stabilization 
parameter. Moreover, we point out that there exists an optimal value of this parameter that minimizes this upper 
bound. This gives a theoretical justification of pre-existing numerical results. We show that the optimal parameter 
can be determined a priori. This is a key point when the method has to be implemented. Finally, we base an 
interpretation of the ifemted penalty method numerical behaviour on some theoretical results about the minimum 
eigenvalue of the stabilized dual operator. This algorithm involves a penalty parameter and a stabilization 
parameter and we discuss a strategy for choosing optimal parameters. 

The mixed formulation of the problem is dealt with in the second part of the paper, which proposes several 
preconditioned conjugate-gradient-type methods. The indefinite character of the problem makes it intrinsically 
hard. However, if one chooses a suitable preconditioner, this difficulty is overcome, since the preconditioned 
opemtor becomes positive definite. We study the eigenvalue spectnun of the preconditioned operator and thereby 
the convergence factor of the algorithm. In contrast with the two previous formulations, we show that this 
convergence factor is majored independently of the stabilization parameter. More precisely, we point out 
Convergence factors comparable with those obtained for Poisson-type problems. Finally, we present a Variant of the 
latter method which uses our so-called macroblock-type preconditioner. A comparison with the simple case of 
diagonal preconditioning is addressed and the improved performance of the macroblock-type preconditioner is 
evidenced. 

Various 2D numerical experiments are given to ~0~0b0ra te  the theories presented herein. 

KEY WORDS Stokes equations; mixed finite elements; stabilization; conjugate gradient methods; pre- 
conditioning 

1. INTRODUCTION 

The finite element discretization of the Stokes equations leads to the solution of mixed systems such as 

It is a well-known result that problem (1) has a unique solution for discretizations (Xj,, Mh) satiswg 
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the classical compatibility condition of Babuska' and Brezzi:* there is a constant k > 0 independent of 
h such that 

Unfortunately, this condition is not satisfied by the (so-called) Q1-PO finite element, which is one of 
the most commonly used finite elements, particularly in the three-dimensional case. The discretization 
is unstable. Among other difficulties clearly pointed out by Sani et al.,3 iterative methods for solving 
(1) can be totally inefficient because of the 'bad' condition number of the 

In order to get round the difficulty caused by instability, one can replace the discrete 
incompressibility constraint Bu = 0 by Bu - /?Cp = 0. Thus problem (1) becomes 

where C is a stabilization operator and /? is a positive stabilization parameter. 
Taking advantage of a suitable Stabilization procedure, one can obtain efficient iterative solvers from 

the normal choice /?= 1.6 This paper aims essentially to show that the stabilization parameter /? 
influences the convergence factor of various iterative techniques. Our objective is to point out some 
optimal values of /? that minimize the convergence factor and lead to a significant improvement in the 
method. 

Therefore the choice of the (so-called) locally stabilized method of Kechkar and Silvester7 is very 
important. Currently, this method, unlike many others, allows one to tune the magnitude of the 
stabilization parameter in order to get the best convergence factors without adversely affecting the 
accuracy of the solution. The improved robustness of this method is justified theoretically in Reference 
7 and various numerical experiments can be found in Reference 8. 

As far as we know, the benefit of stabilization for iterative Stokes solvers was first brought forward 
for multigrid technique settings4 However, other approaches were quickly investigated. 

An important new research category lies in the development of what we have called stabilized 
context Uzawa-type algorithms. Such algorithms have been presented after a very short delay for two 
of the most popular finite elements, namely the Q1-PO element' and the 'mini-tltment'.lo 

A stabilized context Uzawa-type algorithm leads to some conjugate gradient solvers for the 
stabilized dual problem6*11-'3 

L ~ P  = (BA-'B* + / ? c ) { p }  = BA-'f = g .  (4) 

The first part of the paper is concerned with this approach. Section 2.1 reviews some fairly recent 
developments of the original Uzawa algorithm. Section 2.2 explains the efficiency of stabilized context 
algorithms by the properties of the theoretical upper bound for the spectral condition number K of the 
operator L p  This efficiency has already been supported by extensive numerical results in References 6, 
11 and 12 (2D and 3D) and Reference 13 (2D). 

The main results? obtained for uniform 2D meshes of regular macro element^,'^ are: 

(i) Lg is symmetric positive definite 
(ii) K(Lp) is majored independently of the mesh size by a function y@) of the stabilization 

parameter /? 
(iii) y(B) can be minimized for an optimal value of this parameter, say B*. 

Moreover, we show that the optimal parameter can be determined a priori, which is essential when the 
method has to be implemented. 
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Section 2.3 establishes estimates for the convergence factor of the method. We give various 
numerical experiments to illustrate our theoretical results. These results agree closely with those of 
Atanga and Sil~ester,'~ especially with the optimal parameter j?* = O(10-') they obtained from various 
simulations. 

Finally, in Section 2.4 we base an interpretation of the iterated penalty methodI3 numerical 
behaviour on some theoretical results about the minimum eigenvalue of the stabilized dual operator. 
This algorithm has a classical embedded outer-inner iteration structure. A penalty parameter and a 
stabilization parameter influence both the outer iteration behaviour and the inner iteration behaviour. 
We will discuss a strategy for choosing optimal ~arameters.'~ 

The second part of the paper applies iterative methods directly to the mixed stabilized problem (3). 
Section 3.1 presents recent research about these techniques. The indefinite character of the problem 
makes it intrinsically hard. However, if one chooses an adequate preconditioner, this difficulty is 
overcome, since the preconditioned operator becomes positive definite. Ewing et and Bank et 
a1." have presented such a procedure in the case of inherently stable mixed approximations. We can 
extend this technique to a stabilized formulation. A suitable preconditione? is then 

A f l =  (. A - B C ) '  BT where A = diag(d). ( 5 )  

Section 3.2 computes some algebraic properties' of the preconditioned operator AiIAp, especially 

(i) Ap'Ap is symmetric positive definite 

its positivity which allows the use of a conjugate gradient method 

(ii) K(AplAp) 5 K(A-lA) 

In contrast with the two previous formulations, the condition number of the preconditioned mixed 
operator Ap' Ap, and thereby the convergence factor of the algorithm, is majored independently of the 
stabilization parameter. More precisely, we point out convergence factors comparable with those 
obtained for the diagonally scaled Laplacian. 

Section 3.3 discusses the implementation of the algorithm, which has a classical embedded outer- 
inner iteration structure since every preconditioning step requires the solution of a dual-type system. 
The outer iteration behaviour is almost independent of /3 but the inner iteration behaviour depends on 
j?. We show that the optimal value is j? = O( lo2). Finally, we give a variant of the previous method 
based on our macroblock-type pre~onditioner.~.' A comparison with the very simple diagonal 
pre~onditioner'~ is addressed and Section 3.4 discusses numerical results obtained for the three 
approaches. The improved performance of our macroblock-type preconditioner is evidenced. 

The numerical results are given to corroborate the theories presented in this paper. All the results 
come from the uniform lid-driven cavity problem. It is a common test problem which has been solved 
in most of the papers written about Stokes  flow^.^^"^^'^"' We employ a mixed approximation by 
Q1-PO elements using the local stabilization procedure of Reference 7. Structured meshes of regular 
macroelements are considered. 

2. A STABILIZED CONTEXT UZAWA-TYPE ALGORITHM 

2.1. Introduction 

Among the various iterative techniques which can be used to solve mixed problems, the Uzawa 
algorithm22 is certainly one of the most common choices. This algorithm has been improved in very 
different ways; see e.g. References 5 ,  18 and 19. In those papers the algorithms are presented in the 
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context of stable discretizations satisfying the classical compatibility condition. In this case one can 
retain the main property that the corresponding dual operator is symmetric, positive definite and 
provides a condition number bounded independently of the mesh size. Thus good results have been 
presented for the Ql+-Pl element5 and the P2-P1 

On the other hand, Uzawa-type algorithms have been clearly demonstrated to be inefficient for the 
convenient (but unstable) Q1-PO element.5,6 Reference 6 shows that these difficulties can be overcome 
by using an appropriate stabilization procedure. Such an improvement, updating the original (non- 
stabilized) Uzawa algorithm, is quite r e ~ e n t . ~ ’ ~ - ’ ~  The next subsection is concerned with both the 
theoretical aspects and the practical development of such new algorithms. More precisely, we will 
study the effect of the stabilization parameter on the condition number of the stabilized dual operator, 
for which we show the existence of an optimal value. 

2.2. Properties of the stabilized dual opemtor 

for the pressure: 
The initial indefinite problem (3) for the velocity and pressure can be transformed into an equation 

Lgp = (BA-IBT + p c ) p  = B A - y  = g .  ( 6 )  

The properties of the stabilized dual operator Lg are given in Theorem 1. 

Theorem 1 

macroelements: l4  

For the locally stabilized method of Kechkar and Silvester’ and for uniform 2D meshes of regular 

(i) Lg = BA-’BT + flC is symmetric positive definite 
(ii) K(Lg) 5 y(fl), y@) =(a  + bfl)/min(c, 4fl), where a, b and c are positive constants independent 

of the mesh size h 
(iii) the optimal choice for fl in the sense of minimizing y(B)  is fl* = c/4. 

Prooj A proof of this theorem is given in References 9 and 12. Let us remember that (i) follows 

The estimate (ii) is based on the following properties. 

1. A standard and useful property of the original (non-stabilized) dual operator:23 

easily from the ‘stabilization ~ondition’.’~ 

2. A natural decomposition of the pressure space: 

3. A weak Babuska-Brezzi-type stability condition for the Q1-PO element:” 

in which I I h  is the meshdependent seminorm introduced by Johnson and Pitl~aranta.~~ 
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4. Some properties of the stabilization operator: 

l i  = 0, 2, 2, 4 are the eigenvalues of C. 

From (7H10) we have the estimates 

((BA-lB* + #?C)% 4) 2 m i 4 . 7  4#?)11411~, (12) 

where a, b and c are positive constants independent of the mesh size h?12 which demonstrates (ii) if 
one comes to the matricial form. 

Finally, it is obvious that the minimum of y (B)  = (a + b#?)/min(c, 48) occurs at #?* =c/4, which 
0 

Unfortunately, information about #?* is unavailable. The question of interest here is the a 
priori determination of the optimal parameter /I*. Note the important result (iii) which implies 
that #?* is independent of the mesh size. Thus we can determine the optimal parameter in the following 
way. 

demonstrates (iii) and completes the proof. 

1. Compute an approximation bH of the optimal parameter from a sequence of runs made on a 

2. Extrapolate the solution (uH, pH) in order to obtain a 'good' initial guess on the desired grid. 
coarse grid such as H =  1/4. 

Then start the stabilized context Uzawa-type algorithm with #? = pH M #?*. 

2.3. Estimates for the convergence factor of the algorithm 

A measure of the convergence property of the algorithm is given by 

where n denotes the number of iteration steps to achieve convergence at the desired relative accuracy, 
i.e. R" 5 Roe E, and Ri denotes the norm of the residual, R' = IILpp' - gll. 

Remark. E is equal to 

6 is strongly related to the condition number K of the stabilized dual operator as shown in the 

in our computations. 

classical upper-bound estimation 

JK-1 
6 5 -  

JK+1 

derived for the conjugate gradient approach. The previous result (ii) implies 

In Figures l(a) and l(b) we have plotted the convergence factor 6 as a function of #?. These results 
might be expected from the study of the function 
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In fact, a simple calculation yields 

6’ = Y’ 6 =  I’ 2Y’’Y(JY + 1) - y R ( l  + 3Jy) 
JY(JY + 2YJY(dY + 

Thus we have the following. 

1. For B 2 B*, y(/?)=(a + bB)/c, y’(B)= blc, r“(B)= 0.  Thus 6’ > 0 and 6” < 0. 
2. For B < B*, y(B)  = (a + bB)/4P, y ’ (B)  = -a/P2, y”(/?) =a/2B3. Thus 6’ < 0 and 6” > 0. 

Remark. Similar behaviour is observed in the three-dimensional case. See Reference 9 or 12. 

Figures 1 (a) and 1 (b) show how the convergence factor of the algorithm depends on the stabilization 
parameter. The value of the optimal parameter B* is found to be B* = 0.1 in 2D and B* = 0.075 in 
3D.9,’2 These results agree closely with those of Atanga and Silve~ter,’~ especially with the optimal 
parameter P* = O(10-I) they obtained from various 2D simulations. 

The improved performance of the algorithm is evidenced since the optimal choice B=B* required 
about two times fewer iterations than fi = 1, itself an important improvement compared with the 
original (non-stabilized) case B= 0. A measure of improvement is proposed in Figure 2, where the 
reader can appreciate the benefits coming from the contribution of a classical choice B = 1 and from the 
contribution of an optimal choice B=B*. 

Remark. References 9 and 12 compare our stabilized algorithm with other Uzawa-type algorithms 
for two inherently stable discretizations, namely P2-P11* and Ql”-Pl.’ This comparison shows that 
the operator L p  is well-conditioned, as is the standard operator L = BA-’BT corresponding to the Q1+- 
P1 discretization. See Reference 10 for the ‘mini-klkment’ Pl+-Pl or the stabilized P1-P1 element 
after static condensation of the ‘bubble’. 

With appropriate stabilized context Uzawa-type algorithms including an automatic determination of 
the stabilization optimal parameter, the popular Q1-PO element can be used very efficiently, 
particularly in the three-dimensional case. Moreover, the algorithm is open to considerable 
improvement since it takes advantage of available preconditioners for A or Poisson solvers. We can 
think about the incomplete Uzawa algorithm of Robichaud et al.’ and the combined conjugate 
gradient-multigrid algorithm of Verfiuth. l9 These algorithms perform well on inherently stable 
discretizations but break down on unstable ones.’ In Reference 11 we have presented an improvement 
of the incomplete algorithm by stabilization and a stabilized version of the combined algorithm of 

0.6 4 . 

0 . 0  1.0 beta 2.0 

optimal value 
0.2 0.3 

bela 
0.0 / 0,1 

optimal value 

Figure l(a). Convergence factor of Uzawa-type algorithm, 
pE[O; 21 (h= 1/16) 

Figure I@). Convergence factor of Uzawa-type algorithm, 
pE[O*Ol; 0.31 (h=1/16) 
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iterations 

Figure 2. Measure of improvement (h = 1/16) 

Verfurth is under study. Instead of the multigrid approach we prefer the FAC algorithm of 
Ma~Cormick~~ when the mesh is irregular but can be broken up into regular submeshes. The case of 
(so-called) composite grids25 is favourable for the FAC method. Consequently, we expect that an 
approach combining our stabilized Uzawa-type algorithm and an FAC preconditioner for A will 
perform well on composite grids. This will be studied in future work. 

2.4. Further information about the iterated penalty algorithm of Atanga and Silvester 

2.4.1. Introduction. This subsection gives some theoretical  justification^'^ about the numerical 
behaviour of the (so-called) iteratedpenalty algorithm of Atanga and Silvester.l3 The iterative process 
runs as 

where M is the pressure mass matrix and E is a positive penalty parameter. Equation (15) can be 
decomposed as 

A E , p i + l  = [A+BT(pc+EM)-'B]u'+l = f -BT(pC+EM)-'&pi, (164 

pi+ ' = (pc + EM)-' (BU'+ + EMP'). (16b) 

For the solution of (1 6a) a conjugate gradient method may be used. Then the resulting algorithm has a 
classical embedded inner-outer iteration structure. At this stage it is first interesting to study the 
convergence of the inner and outer iterations separately. 

2.4.2. Study of the outer iteration. Every step (15) of the algorithm leads to an iteration for the 
pressure error p = pi- p:I3 

p p i + 1  = [(1/&)M-1/2(&f-lBT + pC)M-'/2 +IIP'c' = p i .  (17) 

Its convergence behaviour is determined by the spectral radius of K, 

P ( K )  = E / ( E  + A*>, (18) 

where A* is the minimum eigenvalue of the matrix A4-1'2(BA-1BT+BC)A4-1'2. 
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Remark. The penalty parameter behaves like an acceleration parameter. 

If one denotes by A: the maximum eigenvalue of the operator Lg = BA-'B* + SC, it is obvious that 

( M - ~ / ~ ( B A - ~ B ~  + p c ) ~ - l / ~ p ,  p ) ,  A* = inf 
P CP, P > e  

where ( , )e denotes the Euclidean scalar product. For uniform 2D meshes made of regular 
macroelements, one can conclude from (12) that A: 2 min(c, 48)). Thus 

P(K)  I & I [ &  + &(c, 4~11. (19) 

This theoretical result proves the observations in Table I of Reference 13. For a given penalty 
parameter E, p(K) 5 E/(E + c) for fi 2 p*. In this range fi has no influence on the convergence behaviour 
of the outer iteration. This appears clearly in Figure 3.  

2.4.3. Study of the inner iteration. The weak point of the algorithm is the fact that an 'inner system' 
(1 6) has to be solved at each outer iteration (1 5). This requires most of the computational time and the 
overall performance of the algorithm depends on the efficiency of the solver for the inner system. 

First note the particular structure of A,,g which occurs in the iterated penalty algorithm. In each 
macroelement the components of the velocity are coupled by the term BT(BC + .M- 'B,  which is not 
the case with the classical penalization matrix 

A,, 0 = A + (1/&)BTM-'B. (20) 

More precisely, the matrix B T ( p C + . M - ' B  corresponding to the Q1-PO discretization has the same 
structure as the matrix B T W I B  corresponding to the Q2-discontinuous Q1 discretization and the size 
of the system is consequently increased. This remains a problem when a direct matrix method is used. 

If one uses a conjugate gradient solution of (16a), the matrix Asp is never built in practice. 
Unfortunately, the matrix A , ,  is ill-conditioned for a 'small' value of the penalty parameter, which 
makes iterative solution of (1 6a) difficult. The main result we want to point out is the fact that the use 

D Q delta 

I I 1 
0 , o  1 ,o 2.0 

beta 
Figure 3. Convergence factor of iterated penalty algorithm (h= 1/8, E =  1O-I)  



SOLUTION OF THE DISCRETIZED STOKES PROBLEM 1245 

0,8 4 
Q eps4. l  
+ epsd.01 
4 eps=0.001 I 9 eps=0.0001 

0,o 1 ,o  2.0 
beta 

Figure 4. Convergence factor of h e r  iteration (h= 1/16) 

of a large value of the stabilization parameter has a preconditioning effect" on the 'inner problem' and 
increases the convergence of (16a) significantly (Figure 4). 

2.4.4. A strateay for choosing optimal pammeters E and /3. From these different points of view we 

1. Choose a moderate value of the penalty parameter in order to have a reasonable condition 
number for Asp The greater 1 / ~  is, the faster is the convergence of the outer iteration but the 
bigger is the condition number of the inner system. Numerical experiments show that a value of 
E = 

2. Now choose the stabilization parameter large enough to (a) raise the optimal convergence 
behaviour of the outer iteration (this is obtained for f i  2 /3*) and (b) ensure that the matrix A,,p 
will be as well-conditioned as possible (this is obtained for /? 2 1). 

By carellly selecting the parameters E and 8, one can significantly enhance the overall performance 

propose the following strategy for choosing the optimal parameters. " 

is a good compromise between the previous considerations. 

o f  the algorithm. 

3. A PRECONDITIONED CONJUGATE GRADIENT METHOD FOR THE MIXED 
FORMULATION 

3.1. Introduction 

For mixed formulations such as (1) or (3) the difficulty comes partly from the indefinite character of 
the operator, which has either positive or negative eigenvalues. The stabilization operator allows us to 
filter the spurious modes so that the zero eigenvalues of the operator A are changed into strictly 
negative eigenvalues for Ap13 Unfortunately, the indefinite character of the stabilized operator remains 
as a problem. An alternative is to choose a suitable preconditioner Ap in order to obtain a positive 
definite preconditioned operator AB'Ap and then be able to use the conjugate gradient algorithm to 
solve the generalized problem 

AB'Afl= AB'F. (21) 

This idea has been presented by Ewing et al. l6 and Bank et al. " for stable discretization (B = 0). We 
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can extend this technique to our stabilized problem (3). The suitable preconditioner' is given by 

As = ( I  B T )  where 2 = diag(A). B -bC ' 
It leads to a positive definite operator Ag'Ag whose properties are given in Theorem 2. 

3.2 Properties of the mixed preconditioned operator 

Ag is preconditioned by a symmetric positive definite preconditioner A: 
The reader is also referred to the recent papers of Silvester-Whaten,2°*2' where the mixed operator 

where 2 and C are both symmetric positive definite matrices. This leads to a symmetric indefinite 
preconditioned operator. Although different, the two approaches (22), (23) lead to the same result: the 
preconditioning of the Laplacian determine the spectrum of the preconditioned mixed operator (see 
Theorem 2 (ii) and References 20 and 21). 

Theorem 2 

For an operator C satisfying the stabilization ~ondition'~ and for any given p > 0: 

(i) AplAp is symmetric positive definite. 

Under the hypothesis that the Laplacian preconditioner A satisfies (Hl) ern I 1 and OM 2 1: 

where Om represents the minimum eigenvalue of A-'A and OM represents the maximum eigenvalue of 
A--'A. 

ProoJ: Let us consider the generalized eigenvalue problem 
Au + BTp = a u  + MTp,  

BU - BCp = MU - AgCp. 

(a) A = I is always an eigenvalue of this problem, corresponding to the eigenvector (0, p ) .  
(b) Let us now consider the eigenvalues A # 1. Equation (24b) implies (A - 1) (Bu - /?Cp)=O 

and thus Bu=BCp, since A# 1. The corresponding eigenvector (u, p )  is such that u#O. 
In fact, u=O would lead to Cp=O and BTp=O, since A#1. According to the stabilization 
~ondi t ion , '~  we would have p = 0. Combining (24a) and uTBT= ( B u ) ~ =  BpTC gives 
uTAu = lZuT& + /l(A - l)pTCp. Letting y =pTCpluT&, we obtain 

ern 5 (1 + /?y)A - I OM, (254 

and then 

since ern and OM satisfies (Hl) and since we have 
ern I 2 I OM 

fo ra l lOIx ,  O < b < a  
b + x - b  
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and 
a a + x  -<- for all 0 5 x ,  0 < a 5 b. 
b - b + x  

The desired results (i) and (ii) follows from (a), (b), (2%) and (Hl). This completes the proof. 0 

Remarks. 

(1) In applications, the preconditioner A may not satisfy (Hl)  a priori. Nevertheless, it is easy to 

( p A 1 - l ~  = ( l / p ) A - ' ~  with p such that (l/p)em < 1 < (l/p)8M, i.e. OM < p < OM. 

compute an appropriate factor p for the preconditioner so that p A  satisfies (Hl): 

(2) If there exist um#O and uM#O such that: 

A-'Au, = emurn and Bum = 0, 

A-'AUM = e M U M  and BUM = 0, 

one can see that 

Om is eigenvalue of AS'A,g corresponding to (Um, 0), 

8 M  is eigenvalue of AjIA,g corresponding to (UM, 0), 

Thus K(Aj'Aj) = K(A-'A). 

The latter result Theorem 2 (ii) obtained with the mixed formulation of the problem is inherently 
different from the corresponding result K(LB) 5 y(B) obtained with the dual formulation. The 
condition number of the preconditioned operator, and thereby the convergence factor of the method, is 
now majored independently of the stabilization pammeter. Thus there is certainly no great advantage in 
varying /3. This appears clearly in the numerical results of Section 3.4. However, the algorithm has a 
classical embedded outer-inner iteration structure and the inner iteration behaviour depends on /I. Thus 
an optimal parameter is available for the overall algorithm. 

Like the Uzawa-type algorithm, the mixed algorithm takes full advantage of available 
preconditioners for A. For example, an incomplete Choleslq factorization as preconditioning has 
been used successfully. On the other hand, A can be defined implicitly from a small number of 
iterations of some iterative methods for solving Poisson-type problems." Iterative techniques giving 
convergence factors bounded independently of the mesh size are certainly among the best choices. We 
can use multigrid" or FACZ5 methods in the case of (so-called) composite grids. 

3.3. Implementation and variants of the method 
For each iteration step the method requires the solution of the preconditioned system 

which can be reformulated as 
solve (BA- 'B~ + BC)Z, = BA-Ir, - rp, 

compute z, = A-' (r,, - B ~ Z ~ ) .  (27b) 
A dual-type problem (27a) has to be solved at each step (26). This can be done iteratively, possibly 

by the conjugate gradient method. As for the previous penalty-iterated algorithm, the overall algorithm 
has a classical embedded inner-outer iteration structure. 
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Since one wants the cost of (27a) to be small, Bank et al." have suggested solving (27a) only 
approximately by performing fewer iterations in (27a) than are required for exact termination. See 
Reference 17 for details in the stable mixed approximation case. 

Here we propose variant of the algorithm in which (27a) is replaced by 
Lpz, = BA-Ir,, - rp, (28) 

where z p  is an approximation of BA-'BT + BC. We find it convenient to use our (so-called) 
macroblock-type preconditi~ner~?~ 

tp = diag(B2-'BT) + IC .  

It has been proven to be a good preconditioner for the stabilized dual operator BA-'BT+BC and 
significant savings in work are obtained compared with the first choice (27a). The resulting algorithm 
has a much simpler single-level iteration structure, since (28) is solved directly. 

3.4. Estimate for the convergence factor of the algorithm 

In Figure 5 we plot the convergence factor 6 = (R"IRo)"" of the preconditioned conjugate gradient 
method (PCGM) as a function of the stabilization parameter. The previous preconditioners are 
investigated. For ease of notation in the figures, the method is called PCGM-S (resp. PCGM-MB) 
when the preconditioner (27) (resp. (28)) is employed. 

Remarks. 

(1) In this case the norm of the residual is 
112 

R' = (I1 f - Au' - BTp'112fllBui - BCp'/lZ) . 
(2)  The algorithm with the preconditioner (27) is denoted PCGM-S because of its resemblance to the 

All the numerical experiments indicate that the convergence factor of PCGM-S is almost insensitive 
to the value of the stabilization parameter 8. In agreement with (ii), this factor is comparable with that 
obtained for the diagonally scaled Laplacian. However, the convergence of the inner iteration depends 
on p. For the solution of the dual-type problem (27a) we use the conjugate gradient method with the 
macroblock-type preconditioner (28). The numerical tests show that an increase in B improves the 

SIMPLE pressure correction algorithm.26 

Q PCGM-S 
+ PCGM-MB 

- El 

0 3 1  - I - I - I I . I 

0.0 0,2 0 ,4  0 , 6  0 , 8  1 , O  
beta 

Figure 5. Convergence factor of PCGM for mixed formulation (/I= 1/16) 



SOLUTION OF THE DISCRETIZED STOKES PROBLEM 1249 

I Q without prec. 
+ withprec. I 

190 2 . 0  
beta 

Figure 6. Solution of dual-type system (h = 1/16) 

convergence of (27a). This appears clearly in Figure 6. The ‘best’ convergence factors are obtained 
when /3 is large, say lo2. Thus B* = lo2 is the optimal choice for the overall algorithm. 

On the other hand, the convergence factor of PCGM-MB varies with 8. It seems to be a decreasing 
fimction of the stabilization parameter B and the ‘best’ convergence factors are obtained when B 2 1. 

The next numerical results are intended to compare the numerical performance of the algorithms 
with the very simple case of diagonal pre~onditioning’~ (PCGM-D): 

In any case the optimal choice /3 = /3* is chosen. The optimal parameter for PCGM-D is /3* = @lo2) 
according to Reference 13. 

The convergence of each algorithm is analysed by plotting the norm of the residual versus the 
number of iterations. A typical iteration history is shown in Figure 7. 

PCGM-S shows a monotonic decrease in residual. With the other two methods the residual is an 
erratic fimction of the iteration number. The first preconditioner is clearly more efficient in terms of 
convergence factor. The disadvantage of this method is the amount of work due to the solution of a 
dual-type problem at each step of the algorithm. PCGM-S is obviously the most expensive per iteration 
step in terms of CPU time and storage. 

PCGM-MB involves nearly the same amount of work as PCGM-D, since the preconditioning step 
(28) is intended to solve independent subsystems of very small s i ~ e . ~ , ~  However, PCGM-MB performs 
well compared with PCGM-D. It requires about three times fewer iterations than PCGM-D. For these 
reasons we recommend the macroblock-type preconditioner PCGM-MB. Its attractive features are its 
inherent simplicity and its reasonable CPU costs and memory requirements. 

Also of significance is the fact that the preconditioning step (28) is easily parallelizable. Attempts 
towards parallelization concern not only (28) but also all the other steps of the algorithm, i.e. the 
computations of Ax, BTy, Bx and C’ for given x and y. See Reference 9 for a fuller discussion of this 
issue. 

4. CONCLUSIONS 

We have studied the influence of the stabilization parameter on various iterative methods for the 
solution of the Stokes problem discretized by the (so-called) locally stabilized Q1-PO element. Both 
theoretical and numerical results have been presented for new approaches updating classical algorithms 
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Figure 7. Efficiency of preconditioners (h = 1/16) 

for either a dual formulation, a penalty formulation or a mixed one. Our main conclusion is that rapid 
convergence can be obtained with a suitable choice of the stabilization parameter. 

The ideas of the analysis can be used to analyse some others iterative methods for the stabilized 
Stokes problem. See References 4, 9 and 10 for a multigrid approach. 

Moreover, we think that the results presented in this paper are open to considerable improvement 
since they take full advantage of available preconditioners or solvers for the Laplacian. Further 
developments are still under way for taking into account the case of composite grids. We think that an 
algorithm combining one of our stabilized context Stokes solvers and an FAC approach for the 
Laplacian will work very well. This is the main direction of our research. 
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